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Résumé

Un patient atteint d’une maladie rare en France doit en moyenne attendre deux ans avant
d’être diagnostiqué. Cette errance médicale est fortement préjudiciable tant pour le système
de santé que pour les patients dont la pathologie peut s’aggraver. Cette errance est due à
la multitude de symptômes possibles caractérisant ces maladies et au fait qu’elles touchent
souvent plus d’un organe. Cela se traduit par des consultations ”erratiques” de différents
spécialistes. L’objectif de cette thèse de Master est de proposer une méthode permettant
de mieux guider ses patients afin de diminuer le temps nécessaire pour le diagnostic. On
s’appuiera pour cela des techniques issues du Reinforcement Learning pour le choix des
examens à faire/spécialistes à contacter en fonction du passé et l’utilisation d’un simulateur
déduit des parcours patients mis à disposition pour l’étude. Pour cela on utilisera notament
des méthodes basées sur le Distributional Reinforcement Learning (DRL) où on modélise la
distribution des récompenses et pas la moyenne. Enfin, on s’intéressera à des méthodes de
réduction des risques en cherchant des trajectoires de patient ayant une variance plus faible
toujours dans le cadre du DRL.
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Optimisation of medical trajectory to avoid diagnostic

wandering in rare diseases.

English version

Abstract

A patient suffering from a rare disease in France has to wait an average of two years before
being diagnosed. This medical wandering is highly prejudicial both for the health system
and for the patients whose pathology may worsen. This is due to the multitude of possible
symptoms that characterise these diseases and the fact that they often affect more than one
organ. This results in ”erratic” consultations in different medical departments or specialists.
The objective of this Master thesis is to propose a method to better guide patients in order
to reduce the time needed for diagnosis. This will be achieved by using Reinforcement Learn-
ing techniques for the choice of examinations to be carried out or services to be contacted
according to the past and the use of a simulator deduced from the patient pathways made
available for the study. For this we will use methods based on Distributional Reinforcement
Learning (DRL) where we model the distribution of returns and not the average. Finally, we
will look at risk reduction methods with the aim of finding patient trajectories with a lower
variance using again DRL framework.
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Notations

• St, At, Rt : State, Action, and reward at time t of one trajectory. Capital letter denotes
random variables.

• st, at, rt : Realizations of previous random variables.

• A : The action space.

• S : The state space.

• τ = (s0, a0, r0, s1, . . .) : A trajectory of state and chosen action.

• 0 < γ ≤ 1 : Discount factor, a penalty to uncertainty of future rewards.

• Gt =
∑∞

k=0 γ
kRt+k+1 : Return or discounted future reward.

• p (s′, r | s, a) : Transition probability of getting to the next state s′ from the current
state s with action a and reward r.

• π(a | s) : Stochastic policy (the agent strategy); πθ(.) is a policy parameterized by θ.

• µ(s) : A deterministic policy; we can also label this as π(s), but using a different
letter gives better distinction so that we can easily tell when the policy is stochastic or
deterministic without further explanation.

• V
(
s
)

: State-value function measures the expected return of state s Vw
(
.
)

is a value
function parameterized by w. The value of state s when we follow a policy π : Vπ

(
.
)

=
Ea∼π

[
Gt|St = s

]
.

• Q
(
s, a
)

: Action-value function is similar to V (s), but it assesses the expected return of
a pair of state and action (s, a). When we follow a policy π ; Q

(
s, a
)

= Ea∼π
[
Gt|St =

s, At = a
]
.

• A
(
s, a
)

= Q
(
s, a
)
− V

(
s
)

: Advantage function for action a at state s.
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1 Introduction

1.1 Context and Motivation of the Problem

The Erradiag report from the Rare Disease Alliance showed that in France patients with a
rare disease (disease whose prevalence is less than 1/2000 according to European threshold)
will have to wait an average of 2 years between the onset of the first symptoms and the
diagnosis of their disease. For more than a quarter of them, this period is more than 5 years.
This lapse of time, known as diagnostic erraticism is a scourge for the health system because
of the additional economic costs, e.g. multiplication of unnecessary medical examinations
and treatments and human costs such as aggravation of the pathology due to inadequate
care. Patients suffering from rare diseases are particularly affected by diagnostic erraticism
due to the the multifactorial nature of these diseases: a rare disease often affects several
different organs and diagnosis therefore requires a multidisciplinary approach. Furthermore,
a practitioner who does not work in an expert centre will probably never see most rare diseases
in the course of his or her career. Although rare diseases are by definition uncommon, there
are many patients, this is why 3 million people are affected in France and between 263 and
446 million worldwide (Nguengang-Wakap et al., 2019). This fact is due to the very large
number of existing rare diseases: no less than 9000 are listed in OrphaNet 3, the portal
dedicated to rare diseases.

France is a pioneer in the fight against rare diseases, launching the first National Rare Disease
Plan in 2005, with the creation of rare disease reference centres (CRMR). These multidisci-
plinary centres aim to provide better care for patients suffering from rare diseases. The report
Erradiag reminds us that, despite the progress made following the creation of these centres,
a significant number of patients are still referred very late. A quarter of patients wait more
than 4 years after the first symptoms before the search for a diagnosis is finally initiated.
A better orientation of patients in the health system is therefore necessary. With this in
mind, the idea of creating reliable medical specialist recommendations emerged. Based on
the patient’s history of recent medical examinations, we would like to be able to recommend
a specialist to go and see in order to get the best diagnosis. To to reach our goal, several
elements are required. First of all, we need patient health data as precise as possible. In
a second step, we will look at a system which recommend a specialist to consult. A para-
metric statistical model will be used for this purpose. By using the data of the patient’s
pathway, which are sequential data and thus have a temporality, we will seek through Rein-
forcement Learning framework to model our recommendations and estimate the parameters
of our model. Finally, the path of a patient from one doctor to another will also be modelled
through a statistical model that takes into account the patient’s history. These 3 elements
allow for relevant recommendations that we hope will be as useful as possible for specialists.
Finally, a validation of the recommendations by expert knowledge is necessary.
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Recently, Medical data, in the form of expert databases such as Orphanet or patient pathway
data shave been made available and consultations/reimbursements with the appearance of
the electronic health record have been structured and are now more accessible for research,
making it possible to improve patient pathway models.

Note that this Master Thesis, although not yet using real medical data, will be followed
by a PhD Thesis which will be also joint-work with the AFM-Telethon databases and with
the help of medical doctors identified by the AFM (e.g. the AIM neuromuscular disease
specialists). As a first step, help on which pathologies to start the analysis from in our model
is also needed. This focus will also come from our partnerships. Finally, the interpretability
of the results is fundamental at the end of the training of the reinforcement algorithm. Once
the policy of the algorithm has been learned (i.e. the estimated optimal decision tree), it
must have a medical reality and be validated by physicians. This validation will also be
conducted with our clinical partners.

1.2 Purpose of the thesis

With the advent of Reinforcement Learning (RL), which has taken a big step forward with
Deep Reinforcement Learning and the ability to master games such as Atari, chess or go
Mnih et al. (2013a); Schrittwieser et al. (2019), more and more algorithms have emerged
with increasingly impressive performance. The performance of deterministic (DDPG and
TD3 Lillicrap et al. (2015); Fujimoto et al. (2018)) or stochastic policies (A2C, PPO, SAC...
Schulman et al. (2017); Mnih et al. (2016a); Haarnoja et al. (2018) )for environments with
continuous or discrete state and action spaces is constantly improved.

Machine Learning and not especially RL have also been used for identify rare disease patient
such as in Colbaugh et al. (2018a,b) but not using patient pathway. Moreover RL have been
used in Healthcare in many applications such as in Dynamic Treatment Regime Chakraborty
and Murphy (2014) for Chronic Diseases or for Automated Medical Diagnosed. Medical
diagnosis is a mapping process from a patient’s information such as treatment history, current
signs and symptoms to an accurate clarification of a disease Ling et al. (2017). However,
RL has only been widely used in the diagnosis of rare diseases. Remi besson’s thesis Besson
(2019); Logé et al. (2020) use DQN for decision making strategy for antenatal sonographic
screening of fetal abnormalities for example. In this thesis, the aim is to adapt and continue
this work for adults using pathway of patients. Can we adapt this work and modelisation to
our problem with patient who are adults ?

Another main issue is the variability of policies. Indeed in the classical problem we are looking
for the maximum of the expectation of the return given a policy. However the variance of
the return is not taken into account whereas it is of capital importance considering human
life. It is not acceptable to have one large return and another very small one. We would like
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to reduce this variability as much as possible. The Distributional RL framework comes into
play insofar as if one has the distribution return, it is then possible to easily calculate the
variance and bring it into play in the optimisation problem. So the questions are how do
we reduce the variance in our policy and is it possible to do in a sense Safe Reinforcement
Learning with lower variability ?

1.3 Thesis disposition

The Master thesis is divided into four parts: the first one gives a first idea of modelisation
of Patient Pathway for medical recommendation. A modelisation via Bayesian Network of
our environment will be conducted and the question of how use prior knowledge to calibrate
a model will be discussed. An accurate learning of our environment is of capital importance
in the success of our problem and the question of how model trajectories is a cornerstone to
give relevant recommendations.

In the second part, a state of the art on the learning of RL and its applications will be
proposed. We will explain the idea of different algorithms used, their strength and drawbacks
by focusing on our problem where action-state space is discrete. A focus on both value
function algorithms such as DQN or variant and policy gradient algorithm such as A2C,
PPO etc will be conducted.

Then in the third part, we will address the issue of Distributional Reinforcement Learning
from a theoretical and practical point of view. C51, QRDQN and IQN algorithms principal
will be developed to understand how use DRL in practice.

Finally, we will try to tackle the problem of Variance Control. We will present a new algo-
rithm with theoretical justification on convergence of the algorithm and an implementation
on our problem. Our implementation of this algorithm achieve same performance than state
of the art algorithm while controlling variance to get more stable policy for patient pathway.
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2 Modelisation of the environment

2.1 The data

The data we will receive is from the Health Data Hub, a new French data centre that cen-
tralises the reimbursements of French patients. We have only received a sample of dummy
data but for the start of the thesis we will have the full data set.

The AFM-Telethon, the French association against myopathies will also gives us a data base
of patients containing which type of rare disease they have and what specialist diagnosed
them. Valuable help from medical specialists will also be needed in our work to calibrate our
models.

Finally Orphanet data base, (Weinreich et al., 2008) allow the estimation of cumulative point
prevalence of rare diseases in French population(Wakap et al., 2020). These data could be
also helpful to calibrate the learning of the model.

2.2 Modelisation of our problem

We denote {Ci}ni=1 the consultation for every specialist and rare diseases {Dj}Kj=1 . We could
include some medical medical examination such as scanner. The state St for a patient is just
for example st = {C3, C̄6, . . . , C2} ∈ S which is the list of specialist/medical examination
that patient has already visited. The value Ci stands if doctor i have been consulted, C̄i
otherwise. We model the end of the patient pathway by a state Send which is a terminal state
when the disease is diagnosed. The action space A corresponds to the recommendation of
specialist to visit at next step.

Given α = (α1, . . . , αn) ∈ Rn
+ the cost to get a consultation or exam of specialist i, we define

the reward , ∀(st, at) ∈ S ×A

rit+1 := r (st, at) = −αi
For simplicity at the beginning and without expert knowledge,we will take ∀i, αi = 1.Then
the goal of the algorithm is to find the optimal policy wich maximize the expectation over
state and action given the policy :

π? = arg max
π

Eτ∼π

[
I∑
t=1

γt−1rit | s0

]
.

where I is a stopping time which correspond when the disease is diagnosed and τ = {s0, a0, s1, a1...},
the trajectory given the policy π. The discount factor γ ∈ (0, 1) in our simulation is chosen
closed to 1 as we have relatively short trajectories of the order of 10.
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The modelling of the state space can be a little different, in fact here we consider that we
can only see a specialist once and that the order of the specialists does not count. We can
also order the choice of doctors. The number of choices for the number of doctors to be
consulted remains generally low. In a first modelling we choose to model 5 doctors and then
in a second one 10 different doctors. Then, we need to model the patient pathway to be able
to simulate fake data needed to train RL algorithms. Indeed, most of RL algorithms have
big sample complexity and in medical field, it is not possible to get as many sample as we
want. This lead to the need of a simulator of data to be able to interact with its.

If we are able to sample from our learned environment, we will be able to find a better
policy. Therefore, we enter in the framework of Model-Based RL where we have to learn the
transitions of our model by using data. This contrast to Model-Free RL where we are able to
interact with our environment such as in video games or robotic field sometimes. When we
first learn transitions and then find the best policy, we call this task planning. Finally, the use
of a sample to learn both a better policy and the model transitions is called Hybrid Model-
Based/Model-Free Imagination. In our case we will try to plan using transitions learned from
our data.

Algorithm 1 Model-Free Learning algorithm
repeat

Sample from environment D = (s, a, r, s)
Use D to update the policy π(s, a)

until Convergence of π

Algorithm 2 Planning with learnind transitions
repeat

Sample from environment D = (s, a, r, s)
Use D to learning the Ta(s, s

′)
Use T to update the policy π(s, a) using planning

until Convergence of π

Algorithm 3 Hybrid Model-Based/Model-Free Imagination

repeat
Sample from environment D = (s, a, r, s)
Use D to update the policy π(s, a)
Use D to learning the Ta(s, s

′)
until Convergence of π
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2.3 Modelisation of patient pathway used as simulator

In this chapter we study the problem of building a model of the environment on which
our algorithms will be trained. It is a crucial aspect for many applications, since it is often
impossible to deploy in real life an algorithm that has not yet been optimized due to the costs
generated by bad decisions. In order to be able to sample our patients, we need to learn the
transisions between the different specialists and the probabilities of being diagnosed given
all state. In his Thesis, Besson (2019) compute the different probabilities of transition using
a Barycenter between expert knowledge usins a maximum entropy principle and maximum
likelihood of the data. In our problem, the amount of data present will be greater so the use
of a Bayesian Network Learning. (Heckerman et al., 1995) is relevant in our problem. The
aim here is to estimate the probabilities of conditional transitions knowing the path followed.

Figure 1: Path between ”Doctors” and ”get diagnosed” state

2.3.1 Bayesian Network Learning

Over the last decade, Bayesian Networks (BNs) have become an increasingly popular Arti-
ficial Intelligence approach. BNs are a widely used method in the modelling of uncertain
knowledge. A Bayesian network (also known as a Bayes network, Bayes net, belief network,
or decision network) is a probabilistic graphical model that represents a set of variables and
their conditional dependencies via a directed acyclic graph (DAG). Bayesian networks are
ideal for taking an event that occurred and predicting the likelihood that any one of several
possible known causes was the contributing factor. For example, a Bayesian network could
represent the probabilistic relationships between diseases and symptoms. Given symptoms,
the network can be used to compute the probabilities of the presence of various diseases.

More formally, the aim of Learning a Bayesian Network (BN) called B is given real data
D from a probability distribution that contains independence assumptions, to encode into
a graph G that model these independence assumptions. By definition, BNs are adapted to
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model conditional Independence given some other nodes. We will cover three core subparts
of BNs that are : Parameter Learning, Structure Learning, Inference.

More formaly, BNs are composed by a :

• A set of random variables : Y = {Yi}ni=1,

• A DAG that encodes independence assumptions using parents relationship denoted Pa,

• Conditional probability trees (CPTs) : P (Yi | PaYi),

• A Joint distribution which is factorized given parents Pa :

P (Y)=P (Y1, . . . , Yn) =
n∏
i=1

P (Yi | PaYi) .

Usually, Domain Experts are encode into the structure of the graph and parameters are fitted
using data available. Learning is also possible when some data is missing using EM algorithm
for example. Usually, Yi are multinomial or Gaussian, depending on discrete or continous
state space but her we only considering multivariate variable Yi.

First Simple Modelisation for Sumulation : In a fist approach, we consider 5 doctors
for which are ’neurologist ’, ’cardiologist’ ,’dermatologist’, ’oncologist’, ’radiologist’. More-
over, we defined a DAG in Fig. 1 which represent the Patient Pathway. ”Doctor 2” in the
dag represent the state where 2 doctors have been visited by the patient. So there is C2

5 state
in the random variable doctor 2. This is the same for doctor 3 where 3 doctors are visited
etc. For simplicity we assume that is equivalent in term of state to have visited a neurologist
and radiologist or the opposite way.

For CPTs between doctor states, we pick randomly transitions from one specialist to another
one. For CPT from doctors to the state ”get diagnosed” we have choose 3 diseases with are
present with proportion {1/3, 1/3, 1/3} in our population. They are defined as follow :

• Disease 1: Need to have visited Neuro, cardio and dermato tho get 0.8 to be diagnosed
and if the patient have visited the 5 doctors, he/she is automatically diagnosed with
probability 1.

• Disease 2: We get 0.6 to be diagnosed if patient have seen ”oncolo” and 0.9 if he has
seen oncolo and radio. If he has visited the 5 doctors, he/she is automatically diagnosed
with probability 1.

• Disease 3: Patient has probability 0.2 to be diagnosed if he has seen a cardiologist.
Same, he/she is diagnosed if he has seen the 5 doctors.

14



If the patient has seen all the doctors, he/she is automatically diagnosed, which is a utopian
but we need a stopping condition for modelling. A second modelisation that can be described
in Annex 7.1 takes into account 10 doctors and 5 diseases to learn more complex policies and
observe differences in the learning of the algorithms.

2.3.2 Example of sampled trajectories

We use forward sampling across the BN with discrete variable to get samples. We have
remove data letting Nan value once once the diagnosis is made before ”doctor5” state, the
terminal state. The use of ”1” in Fig. 2 stands for if the disease have been diagnosed, ”0”
otherwise.

Figure 2: An example of Patient Pathway for disease 1

Once we have simulated data, the aim is to see if, with a fixed structure, we are able to
estimate the parameters from Θ of the model using these data. There is a field of research
in structure learning in Bayesian networks but here we work with a fixed structure because
it has a physical meaning that cannot be changed.
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2.3.3 Learning Parameters of the BN given the DAG

We are interested in learning the parameters Θ of the Bayesian network that define the tran-
sitions between doctors. Two main families of approaches are possible, Maximum likelihood
learning and Bayesian learning of parameters.

Maximum Likelihood Approach : This is the simple approach when we have no clue
or prior knowledge before learning of parameters. However, we usually overfit the data and
this approach has a lack of regularity. For each discrete variable Yi:

∀(a, b) ∈ S, P̂MLE (Yi = a | PaYi = b) =
Count(Yi=a, PaYi=b)

Count(PaYi=b)

In the graph 3, we have plotted the error between fixed parameters of a the BN of Fig. 1 and
parameters of another BN with learned parameters in function of the sample size. As we can
see, the more the sample size of the data increase, the more the error (L2 norm) between
true and learned parameters decrease.

Figure 3: L2 error between True and Learned Parameters of a BN using MLE in function of
sample size used to learn parameters.

Bayesian Approach : In the Bayesian setting, we need to fix priors on random variables
that will guide the learning of parameters. Exploiting priors, we use prior knowledge about
parameters. The consequence of this approach is :

• Beliefs before experiments are used.

• It helps to deal with unseen data.

• It Bias us towards “simpler” models.
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Relevant prior for multivariate distribution is Dirichlet distribution has it is a conjugate prior

θ ∼ Dirichlet (α1, . . . , αk) ∼
∏
i

θαi−1
i

.
When estimating the parameters of a categorical or multinomial distribution, simple and very
used practice is to add the notion of pseudocounts to the observed counts in the data. The
consequence of this process is additive smoothing and regulation of the maximum-likelihood
estimate in order to avoid overfitting. Moreover, it prevents too sharp assignments to the
parameters that are due most of the time to a lack of data that would be used to estimate
that parameter.

More formally, a psuedocount c is a pre-determined value that is added to the counts of
occurrence of each category/class in the data when estimating the parameters of a multino-
mial. To give an simple example, if we are trying to estimate the parameter θ that a coin
lands heads and we have observed counts H and T for heads and tails respectively, then our
maximum likelihood estimate is :

θ̂ =
H

H + T

However, when using psuedocount value of c, then our estimate would be :

θ̂ =
H + c

(H + c) + (T + c)

=
H + c

2c+ T +H

Adding equal psuedocounts to each outcome, we push our estimate of the parameter closer
to an uniform distribution rather than the maximum likelihood estimate of the parameter. A
common psuedocount across classes implies a hypothetical scenario in which we have already
observed equal numbers of class before observing the data. To summarize, the larger the
psuedocount, the more data will be needed to push the estimate of the parameters away
from the uniform distribution.

Relation between Psuedocounts and Maximum a Posteriori (MAP) estimate :
Given a counts vector x generated by a multinomial distribution, the posterior distribution
Θ with a Dirichlet prior is a Dirichlet. Considering :

Θ ∼ Dir (α1, . . . , αd)

the posterior after observing x is :

Θ | x ∼ Dir (x1 + α1, . . . , xd + αd)
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Then the MAP estimator is :

θMAP
i =

xi + αi − 1∑d
j=1 (xj + αj − 1)

So using psuedocounts of ci added to each xi when estimating our parameters as follows :

θ̂i =
xi + ci∑d

j=1 (xj + cj)

is the same as estimating the MAP assuming a Dirichlet prior parameterized by (c1+
1, c2 + 1, . . . , ck + 1).

Conducting the same experience than in Fig. 3 on synthetic data, we observe same results
using simple prior with psuedocount of 1 of every node.

Figure 4: Frobenius Norm Between learned and True Parameters

With this Bayesian framework, we will be able to incorporate prior knowledge using psuedo-
count in our models with the help of specialist to calibrate our model.
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3 Classical Reinforcement Learning

In this chapter, we develop an optimization formulation for the task of building a decision
support tool for the diagnosis of rare diseases using patient pathway. We aim to minimize the
number of consultations necessary to achieve a state where the patient’s disease is diagnosed.
To solve this optimization task, we investigate several reinforcement learning algorithms
both based on value function estimation or policy-based algorithms. In our case, we would
like to obtain a stochastic policy in the sense that it gives us the doctors with the highest
probability of giving a good diagnosis. This is why we will focus on a stochastic rather than
deterministic policy. Indeed, we prefer to give doctors a list of different specialists to consult
who are relevant rather than a single specialist.

3.1 State of the art

Reinforcement Learning popularised by Bertsekas et al. (2000); Sutton and Barto (2018) has
received increasing attention in recent years with improvement in Chess and Go games (Mnih
et al., 2013b; Schrittwieser et al., 2019). Whether for discrete or continuous environments,
algorithms are capable of learning ever finer policies. We can distinguish two main branches,
the algorithms based on the learning of value functions and those based directly on the
optimisation of a policy.

For algorithms based on Value estimation such as Deep Q Networks, (Mnih et al., 2013a),
they have showed excellent results in discrete environment. Moreover, Prioritized experi-
ence replay (Schaul et al., 2015) has allow better performance with Q Learning. Finally
some algorithms have allow DQN to be more stable such as Double Q-Learning (Guez and
Van Hasselt, 2015).

On the other hand, to tackle the curve of dimentionality for large state-action spaces and for
continuous action spaces, policy based methods have been developed in parallel. Actor-Critic
methods (Mnih et al., 2016a) have been developed and take advantage of value function
estimation while optimizing the policy as the same time. Then the idea of Trust Region
Emerged with TRPO and PPO (Schulman et al., 2015a, 2017) algorithms lead to more
stable performance. Finally, Soft Actor Critic algorithms (Haarnoja et al., 2018) improve
exploration in Policy Gradient algorithms a have been a success in recent years.

The problem of safety in Reinforcement Learning have been studied and is quite closed to our
as in both case we try to constraint the policy we learn. Achiam et al. (2017) have developed
and algorithm called CPO which learn policy under contraints. Some other algoritms take
care of safety during exploration such as in Dalal et al. (2018). In our problem the main
difference is that we want to constraint Variance, however no paper have develop method for
this.
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3.2 Framework and Notations

Definition 3.1 (Markov Decision process)

We define a Markov decision process (MDP), given by its action space A and state space S,
state dynamics, reward function and discount factor. In a MDP, the state dynamics can be
written as :

P (st+1 | st, at) .
The return of a trajectory τ = (s0, a0, r0, s1, . . .) at time t is defined as :

Gt =
∑
k

γkrt+k.

If given a complete trajectory (episode) that terminates, the returns can be computed recur-
sively using

Gt = rt + γGt+1 .

Definition 3.2 (Value Function)

The value function V π : S → R of a policy π is the expectation of the cumulative (discounted)
future rewards starting from a point s0 = s

Vπ
(
s
)

:= Eτ∼π

[
T∑
t=0

γtr (st, at) | s0 = s

]
where the trajectory τ is generated under the policy π. T can be a random stopping time
corresponding to the first time of arrival at a so-called terminal state. It can also be T =∞
for infinite horizon problems. Often, we will write the value function at a state st, where it
is implied we are at the t-th step in a trajectory, as

V (st) = Eτ∼π

[
T∑
t′=t

γt
′−tr (st′ , at′) | st

]

We can remark that this is coherent with the notion of cumulative (discounted) future rewards
which defined the value function, but not with the notation. In the finite horizon setting, a
more correct notation would be to write V (t, st) and make the dependence on the starting
time t of the discounting explicit.

Given deterministic policy π : S → A and associated decision rule dπ(s) = π(s), the dy-
namic programming principle leads to a dynamic programming equation called the Bellman
equation:

Vπ
(
s
)

= r(s, π(s)) + γ
∑
s′∈S

p (s, π(s), s′)Vπ
(
s′
)
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which is a fixed-point condition. The Bellman equation can be used to evaluate a policy π,
that is compute its associated value function V π. The Bellman operator T π can be defined
as an operator on a function space such as :

T πv(s) := r(s, π(s)) + γ
∑
s′∈S

p (s, π(s), s′) v (s′)

This operator is interesting as it is contractant, ensuring the existence of a solution. In fact,
it has the following four properties:

• contractive: ‖T πV1 − T πV2‖∞ ≤ γ ‖V1 − V2‖∞

• monotonicity: if V1 ≤ V2, then T πV1 ≤ T πV2

• offset: for any c ∈ R, T πV + cI = T πV + γcI

• unique fixed point: Vπ is the unique fixed point of the Bellman operator T π.

Definition 3.3 (Optimal Value function)

Given a set of policies Π, the optimal value function satisfies

V ∗ = max
π

Vπ

for every state s ∈ S. An optimal policy π∗ is one that satisfies the maximum. Strictly
speaking, we are taking a maximal policy with respect to a partial ordering on policies hat
compares them by looking at their respective value functions:

∀s ∈ S, π1 ≤ π2 ⇐⇒ Vπ1(s) ≤ Vπ2(s)

With the same manner, the optimal value function V ∗ obeys a dynamic programming prin-
ciple called the optimal Bellman equation :

V ∗(s) = max
a∈A

{
r(s, a) + γ

∑
s′∈S

p (s, a, s′)V ∗ (s′)

}

We also get fixed-point condition, which can once again be expressed in terms of an operator
called the Bellman optimal operator:

T v(s) := max
a∈A

{
r(s, a) + γ

∑
s′∈S

p (s, a, s′) v (s′)

}

Then, we have that the optimal value function satisfies the equation

T V ∗ = V ∗
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Definition 3.4 (Q Function or action state value function)

The action-state value function of a policy π is the function Qπ : S ×A → R is defined by

Qπ(s, a) := Eπ

[
T∑
t=0

γtr (st, at) | s0 = s, a0 = a

]

where the trajectory τ is generated under the policy π. We can notice that Qπ has an link
to the value function V π. Indeed, ∀s ∈ S, it holds that :

Vπ(s) = Ea∼π(s,) [Qπ(s, a)] =
∑
a

π(s, a)Qπ(s, a)

There’s also a reverse equality :

Qπ(s, a) = Eπ [r(s, a) + Vπ (st+1) | st = s] = r(s, a) +
∑
s′

p (s, a, s′)Vπ (s′)

Definition 3.5 (Optimal action value function)

Optimal policies also share the same optimal action-state value function

Q∗ = max
π

Qπ

for all states s ∈ S and actions a ∈ A. There is also a link also between optimal values
function :

V ∗(s) = Q∗ (s, π∗(s)) = max
a∈A

Q∗(s, a)

One we have define some properties of Value and action-value function, algorithms can be
derived to find optimal policy. When all transitions are known, we can use Dynamic pro-
gramming algorithms such as Value Iteration or Policy Iteration.

3.3 Value iteration

This algorithm use the fact that Bellman Operator is a γ- contraction. So given all rewards
and transitions probabilities, it is possible to use these operator to converge to an optimal
policy. With this algorithm each iteration is very efficient but convergence is asymptotic.
Moreover it work only for discrete state and action spaces. The full environment need to be
known so in practice is is not very use except for specific cases.

22



Algorithm 4 Value iteration

for k=1,....K do
Vk ← T ∗Vk−1

end for
for s ∈ S do
πK(s)← argmaxa∈A

{
r(s, a) + γ

∑
s′∈S p (s, a, s′)VK (s′)

}
end for
return Policy πK , value Vk

3.4 Policy Iteration

In this algorithm, we take advantage of the action-state function to iteratively update the
policy with greedy improvement. It is composed of two step : evaluation and improvement.
In evaluation step (E), we compute the value function of each state action or state. In
improvement step (I) we improve with a greedy manner the policy π. This gives the following
sequence :

π0
E−→ Qπ0

I→ π1
E→ Qπ1

I→ π2
E−→ . . .

I→ π?
E→ Q?

Knowing transitions, the Q function can be computed exactly. The main difficulty is when
we don’t have access to all transitions of the model. In this case, learning requires sampled
episodes of the environment and an estimation of a value or action-value function. In practice
it is also possible to approximate Q value using gradient descent.

Algorithm 5 Policy Iteration Algorithm

for k=1,...K do
Compute value function Qπk

Then set πk+1(s) ∈ arg maxa∈AQπk(s, a)
end for
return πK

In the following section, we try to solve MDP problem with an incremental manner using
Reinforcement Learning algorithms when transactions are not known and the dimension not
to big.
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3.5 Tabular case Reinforcement Learning

These methods are efficient when the dimensionality of the action-state space is not to big.

3.5.1 Monte Carlo estimation

The idea of Monte Carlo estimation is simple, generates episodes τi under a policy π starting
at some state s0, and compute their empirical returns :

R (τi) =

Ti∑
t=0

γtrt,i

Then, the value estimate is then the empirical mean :

V̂π (s0) =
1

n

n∑
i=1

R (τi)

With beginning state s0 fixed so we are only estimating its value. Monte Carlo estimation
is interesting but does not allow online learning and require full trajectories which can be
sometimes very difficult in complex environment.

3.5.2 Temporal difference estimation

The following method called TD(0) estimation is based on Vπ which satisfies the Bellman
equation. This means that the temporal difference error of an estimate V̂π of Vπ, defined
after each transition and reward sampled st, rt, st+1 is :

δt = rt + γV̂π (st+1)− V̂π (st) .

This quantity should be small for the estimator V̂π to be good. Indeed, the quantity δt is a
(biased) estimate of so-called Bellman error, which measures how the discrepancy between
V̂π(s) at some state s and the Bellman image T πV̂ (s) so these quantities should be equal.
To learn the estimator V̂ π, TD (0) updates are performed as :

V̂π (st)← V̂x (st) + αtδt

= (1− αt) V̂π (st) + αt

(
rt + γV̂π (st+1)

)
with αt a learning rate. This method introduces bias but it has less variance than Monte
Carlo estimation. Moreover, this method does not require the entire trajectory to be known
to perform an update, allowing for fully online learning. In order to get less biased estimate
of the Bellman error, the use of several rewards to compute the temporal difference can be
efficient. So the n -step TD(n) is

δ
(n)
t =

n−1∑
k=0

γkrt+k + γnV̂π (st+n)− V̂π (st) .
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The Q -function update is then done as usual. This can be rewritten using the n -step return:

Gt:t+n =
n−1∑
k=0

γkrt+k

leading to
δ

(n)
t = Gt:t+n − V̂π (st) .

3.5.3 TD(λ) estimation

To create a tradeoff between bias and variance in estimation of value function, we can define
TD(λ) which is between incremental MC and TD(n). The scheme is defined for 0 < λ < 1
as :

V̂π (st)← V̂π (st) + α
T∑
t′−t

(γλ)t
′−tδt′

where (δt)t is the sequence of temporal differences errors of the trajectory. In theory, this
exact scheme does require the entire trajectory be known before performing an update. This
can be seen more explicitly by introducing the λ -return :

Gλ
t = (1− λ)

∞∑
n−1

Gt:t+n

But in practice, function approximators can be used to not use full trajectory.

3.6 Policy Improvement via Temporal Difference estimation

3.6.1 SARSA

Once we get an estimation of using previous policy improvement methods, we ca use policy
improvement to obtain a better policy. For example we can define an exploration policy
using the softmax function on Q and a temperature parameter τ :

πQ(s, a) =
exp(Q(s, a)/τ)∑

a′∈A exp (Q (s, a′) /τ)

Considering transition (st, at, rt, st+1), we can take the next action at+1 according to πQ and
update using the TD(0) scheme: compute the temporal difference of the Q -function

δt = rt + γQ̂ (st+1, at+1)− Q̂ (st, at)

and then update Q̂

Q̂ (st, at)← Q̂ (st, at) + αtδt

= (1− αt) Q̂ (st, at) + αt

(
rt + Q̂ (st+1, at+1)

)
.
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With this scheme, we ensure the policy continues to improve by decreasing the temperature τ
to 0 and becoming more and more greedy in our action selection (keeping the same τ reduces
the algorithm to some kind of softmax policy evaluation). In each update, the algorithm
uses the entire state-action transition (st, at, rt, st+1, at+1). The use of the value candidate
Q̂ to define the policy used to select the action means that SARSA is an on-policy learning
algorithm.

3.6.2 Q-Learning

Q learning has been for many year state of the art in Reinforcement learning for discrete
environment. There exits many variant of this algorithm but the simpler in tabular case is
based on the following idea. The principal here is to introduce the optimal TD error for the
Q value function :

δt = rt + γmax
a′

Q̂ (st+1, a
′)− Q̂ (st, at)

and updating the Q estimate using that:

Q̂ (st, at)← Q̂ (st, at) + αtδt.

We can notice that this is not the same as using the greedy action to update : this is upper-
bounding the Q-value TD error and then using that upper bound to update the value. So
Q-learning is an off-policy learning algorithm, whatever exploration policy we use.

Algorithm 6 Q-learning algorithm

while Trajectories non terminate do
Chose at according to exploration policy and get (rt, st+1)
Compute δt = rt + γmaxa′ Q̂ (st+1, a

′)− Q̂ (st, at)
Q̂ (st, at)← Q̂ (st, at) + αtδt

end while
for s ∈ S do
π(s)← arg maxa∈A Q̂(s, a)

end for
return π

3.7 Approximate Reinforcement Learning

When the state and action space is too large, the calculations are usually intractable and
it is necessary to switch to parametric approximations of the value functions. We define
vθ ≈ Vπ and qθ ≈ Qπ.
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3.7.1 Approximation of evaluation via Monte carlo

Considering sample trajectories (s0,i, a0,i, r0,i, . . .), we want the approximator to match the
empirical returns

Ri =

Ti∑
t=0

γtrt,i = vθ (s0,i) + εi

Our objective is to minimize the empirical error :

L(θ) =
1

n

∑
i

(vθ (s0,i)−Ri)
2 .

3.7.2 Approximation of evaluation via TD

To use approximation via TD, we need to target the bootstrapped returns :

Gt = rt + γvθ (st+1)

and the parameter is updated according to :

θ ← θ − αt (vθ (st)−Gt)∇θvθ (st) .

We can notice that this is here a semi-gradient update (where we minimize the MSE for a
sample and where the derivative wrt vθ (st+1) is ignored).

3.7.3 Approximation of optimization via Q-Learning

To approximate Q-learning which tries to minimize the TD error upper bound, we reformulate
the function approximation step as targeting a bootstrap estimate of the value

Gt = rt + γmax
a′∈A

qθ (st+1, a
′)

In the online case, we target the bootstrapped loss

L(θ) = (qθ (st, at)−Gt)
2

and perform updates with a semi-gradient such as :

θ ← θ − αt (qθ (st, at)−Gt)∇θqθ (st, at) .

The main issue here is that this method can sometimes diverge or takes many time to
converge. Indeed, oscillations, over-estimation effects, problem of scaling and correlation
between samples can occurs. To deal with this issue, some solutions to stabilize the learning
have been proposed such as : Target Network, double Q-learning, reward normalization or
Experience replay (Mnih et al., 2013b). Experience replay use old sample to be more sample

27



efficient and the use of a Target Network. The target network’s parameters are not trained,
but they are periodically synchronized with the parameters of the main Q-network. The
idea is that using the target network’s Q values to train the main Q-network will improve
the stability of the training. Here an algorithm that we will use with experience replay and
target network ideas :

Algorithm 7 Q-learning with Experience Replay and Target Network

Input: Inital parameters θ, θ̄ and target update interval C.
for i = 1, ..., n do

Set initial state s0,i

while termination do
take action at,i and get rt,i, st+1,i

Store the transition et,i = (st,i, at,i, rt,i, st+1,i) in buffer D
t← t+ 1
Update network qθ from mini batch using target-boostrapped returns
Every C steps update θ̄ ← θ

end while
end for

Finally Double Q-Learning is used to limit over-estimation in the learning. The scheme of
Double Q-Learning is the following :

• Let a∗2 = argmaxa qθ2 (st+1, a)

• Set the return bootstrap Gt = rt + γqθ1 (st+1, a
∗
2)

• Update: θ1 ← θ1 − αt (qθ1 (st, at)−Gt)∇θ1qθ1 (st, at)

• Repeat by alternating θ1 and θ2.

3.8 Policy Gradient Method

The aim of reinforcement learning is to find an optimal strategy for an agent to obtain
optimal sum of rewards. The main idea of policy gradient methods target at modeling and
optimizing the policy directly in contrast to Q-Learning where we use value function. The
policy is modeled with a parameterized function respect to θ, denoted πθ(a|s). The value of
the reward (objective) function depends on this policy and then various algorithms can be
applied to optimize θ for the best reward. Usually we define a policy performance metric
denoted J . Very often this metric is simply the value function :

J(πθ) = Eτ∼πθ

[
∞∑
t=0

γtrt

]
= Eτ∼πθ [R(τ)]. (1)
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where τ = {s1, a1, r1, . . . , sT−1, aT−1, rT−1, sT} and R(τ) =
∑T

t=0 γ
trt We will sometimes

denote J(πθ) as J(θ) as we are maximizing over the policy parameter θ. Optimization
methods seek to maximize performance according to θ, so their updates approximate gradient
ascent in J :

θt+1 = θt + α∇̂J (θt)

where ∇̂J (θt) is a stochastic estimate whose expectation approximates the gradient of the
performance measure with respect to its argument θt. All methods that follow this general
scheme are referred to policy gradient methods. Moreover, methods that learn approxima-
tions to both policy and value functions are often called actor-critic methods, where the term
actor is a reference to the learned policy, and the term critic refers to the learned value
function.

Very often, policy-based methods are useful in the continuous space. Because there is an
infinite number of actions and/or states to estimate the values for and hence value-based
approaches are way too expensive computationally in the continuous space. For example,
in generalized policy iteration, the policy improvement step arg maxa∈A π(s, a) requires a
full scan of the action space, suffering from the curse of dimensionality. However it is also
very useful for discrete environments and gives good very good results also. The following
property allow us to derive algorithms based on policy gradient.

Proposition 3.1 (Gradient under a parametric law)

Given a set of probability models {Pθ : θ ∈ Θ ⊆ Rd
}

on a set X and a function f : X → R,
we get that

∇θEX∼Pθ [f(X)] = EX∼Pθ [f(X)∇θ logPθ(X)]

This property is interesting when deriving estimators of the derivatives in optimization prob-
lems with stochastic objectives. Generalization to the case where f also depends on θ is
straightforward. This can be shown either by either writing the expectation as an integral,
or by a change of measures with a Radon-Nikodym derivative.
The following property allow us to derivate the gradient of equation 1 which is :

∇θJ (πθ) = Eτ∼πθ

[
R(τ)

T∑
t=0

∇θ log πθ (st|at)

]
Moreover, there are other ways of writing and derivate the policy gradient, such as in the
book of Sutton and Barto (2018).

∇θJ (πθ) = Eπ [Qπθ(s, a)∇πθ(s, a)] .

A key point according to Schulman et al. (2015b) is that there are several different related
expressions for the policy gradient, which have the form :

∇θJ (πθ) = E

[
T∑
t=0

Ψt∇θ log πθ (at | st)

]
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where Ψt may be one of the following:

•
∑∞

t=0 rt : total reward of the trajectory.

• Qπ (st, at) : state-action value function.

•
∑∞

t′=t rt′ : reward following action at.

• Aπ (st, at) : advantage function.

•
∑∞

t′=t rt′ − b (st) : baselined version of previous formula.

• rt + V π (st+1)− V π (st) : TD residual.

A major breakthrough in performance is to use advantage function which gives very good
results in terms of variance reduction. The estimator GAE, Schulman et al. (2015b) of
advantage function is currently very use especialy on continuous-control setting. Now, we
will present the most famous algorithms based on policy gradient in the next section.

3.8.1 The REINFORCE algorithm

REINFORCE (or Monte-Carlo policy gradient) algorithm principle relies on an estimated
return by Monte-Carlo methods using episode samples to update the policy parameter θ.
This algorithm works due to the fact that the expectation of the sample gradient is equal to
the actual gradient :

∇θJ(θ) = Eπ [Qπ(s, a)∇θ lnπθ(a | s)]
= Eπ [Gt∇θ ln πθ (At | St)] , because Qπ (St, At) = Eπ [Gt | St, At]

This method relies on a full trajectory as many Monte Carlo methods.

Algorithm 8 REINFORCE Algorithm

Initialize the policy parameter θ at random.
Generate one trajectory τ on policy πθ :
for t = 1, ...T : do

Estimate the the return Gt

Update policy parameters θ ←− θ + αtγGt∇θ lnπθ(At|St)
end for

We can improve this algorithm by subtract a baseline to reduce the variance of gradient
estimation while keeping the bias unchanged. This can be done using advantage function for
example.
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3.8.2 Actor-Critic method

Actor-critic algorithms are based on two models, which may optionally share parameters in
certain cases :

• Critic updates the value function parameters w and depending on the algorithm it could
be action-value Qw(a|s) or state-value Vw(s).

• Actor updates the policy parameters theta for πθ(a|s), in the direction suggested by
the critic.

It is relevant to learn the value function in addition to the policy, since knowing the value
function can assist the policy update, such as by reducing gradient variance in REINFORCE
policy gradients, and that is the main idea of Actor-Critic method does.

Algorithm 9 Actor-Critic Algorithm

Initialize s, θ, w at random and sample a ∼ πθ(a|s)
for t = 1, ...T do

Collect sampled rt ∼ R(s, a) and s′ ∼ P (s′|s, a)
Update the policy parameters : θ ← θ + αθQw(s, a)∇θ lnπθ(a | s);
Compute the correction (TD error) for action-value at time t :
δt = rt + γQw (s′, a′)−Qw(s, a)
Use it to update the parameters of action-value function :
w ← w + αwδt∇wQw(s, a)
Update a← a′ and s← s′.

end for

The more famous algorithms based on this principle are A2C and A3C (Mnih et al., 2016a)
which are respectively synchronous and asynchronous version of this algorithm running dif-
ferent agent in parallel. These two algorithms gives us stochastic policy but other algorithm
could result in deterministic policy such as DPG and its variants, DDPG and D4PG (Silver
et al., 2014; Lillicrap et al., 2015). In this framework action are chosen with a deterministic
manner such as a = µ(s).

A very interesting idea to improve training stability is that we should avoid parameter updates
that change the policy too much at one step. This crucial idea coupled with the use of a
surrogate function lead to two famous algorithms used, TRPO and PPO. Before this, we will
delve into Off Policy algorithm to understand the surrogate function in TPRO and PPO.

3.8.3 Short description of Off Policy Algorithm

Off policy is the term used when we refer to the use of sample from another distribution to
compute gradient. The behavior policy for collecting samples is a known policy (predefined
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just like a hyperparameter), labelled as β(a | s). The objective function J is the expectation
of the value function can be defined according tho its behavior policy:

J(θ) =
∑
s∈S

dβ(s)
∑
a∈A

Qπ(s, a)πθ(a | s) = Es∼dβ

[∑
a∈A

Qπ(s, a)πθ(a | s)

]

where dβ(s) is the stationary distribution of the behavior policy β (we can define dβ(s) =
limt→∞ P (St = s | S0, β)) and Qπ is the action-value function estimated with regard to the
target policy π and not the behavior policy.

Given that the training observations are sampled by a ∼ β(a | s), we rewrite J as :

∇θJ(θ) = ∇θEs∼dβ

[∑
a∈A

Qπ(s, a)πθ(a | s)

]

= Es∼dβ

[∑
a∈A

(Qπ(s, a)∇θπθ(a | s) + πθ(a | s)∇θQπ(s, a))

]
derivativing with product rule

(i)
≈ Es∼dβ

[∑
a∈A

Qπ(s, a)∇θπθ(a | s)

]

= Es∼dβ

[∑
a∈A

β(a | s)πθ(a | s)
β(a | s)

Qπ(s, a)
∇θπθ(a | s)
πθ(a | s)

]

= Eβ
[
πθ(a | s)
β(a | s)

Qπ(s, a)∇θ ln πθ(a | s)
]

The part πθ(a | s)∇θQ
π(s, a) on the line with (i) can be ignored because if we use an approx-

imated gradient with the gradient of Q ignored, we still guarantee the policy improvement
and eventually achieve the true local minimum. This is justified in the proof here Degris
et al. (2012). We can also recognize an importance weight with the quotient πθ(a|s)

β(a|s) .

3.8.4 TRPO (Trust Region Policy Optimization).

Trust region policy optimization denoted TRPO (Schulman et al., 2015b) enforce a KL
divergence constraint on the size of policy update at each iteration. So big changes of policies
are not possible and lead to more stable learning of policy. Before this, we will explain how
derive the objective of TRPO using off-policy formulation.

Considering the case when we are doing off-policy RL, the policy β used for collecting trajec-
tories on rollout workers is different from the policy π to optimize for. The objective function
called L here in an off-policy model measures the total advantage over the state visitation
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distribution and actions, while the mismatch between the training data distribution and the
true policy state distribution is compensated by importance sampling estimator.

L(θ) =
∑
s∈S

dπθold
∑
a∈A

(
πθ(a | s)Âθold (s, a)

)
=
∑
s∈S

dπθodd
∑
a∈A

(
β(a | s)πθ(a | s)

β(a | s)
Âθold (s, a)

)
= Es∼dπold ,a∼β

[
πθ(a | s)
β(a | s)

Âθold (s, a)

]
The notation θold is the policy parameters before the update, dπθold is defined in the same
way as above; β(a | s) is the behavior policy for collecting trajectories. Estimated advantage
Â(.) is used rather than the true advantage function A(.) because the true rewards are usually
unknown.

Considering a policy πθold , we want to use the previous samples to get to a better policy πθ.
So we choose β in off line setting as our current policy πθold . However, there is no guarantee
we can trust the behavior in these samples: we can end up stuck in a cycle of states. We can
rewrite our objective function as :

Lπθold (πθ ) = Es∼dπθold Ea∼πθold

[
πθ(s, a)

πθold (s, a)
Aπθold (s, a)

]
=
∑
s∈S

dπθold (s)
∑
a∈A

πθ (s, a)Aπθold (s, a)

Moreover, we can show that the gradient of Lπθold (πθ) wrt θ is equal to the policy gradient of
J in this section. So Lπθold is a local approximation of the policy performance J (πθ )−J(πθold )
in the neighborhood of πθ. In practice the advantage function Aπ(s, a) will be approximated,
using a TD(λ) error for instance. So we maximize a lower bound on Lπ which is still a local
approximation of J using the total variation.

Policy improvement scheme to derive an algorithm. Given the current policy πk, we
get the next one by solving :

πk+1 ∈ argmax
π′

Lπk (π′)− CEs∼dπk [DTV (π′(s)‖πk(s))]

where C > 0 is a constant, and we search π′ in our search space (for instance, parametric).
The maximum we get is positive and satisfies

J (π′)− J (πk) ≥ max
π′
{Lπk (π′)− CEs∼dπk [DTV (π′(s)‖πk(s))]} ≥ 0.

The maximization problem might be too difficult due to how the total variation distance
DTV is defined. We can relax it by lower-bounding again, using Pinkser’s inequality to see
that :

DTV (π′(s)‖π(s)) ≤
√

2KL (π′(s)‖π(s)).
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More details can be found in the original paper. So finally we obtain a problem of the form :

πk+1 = argmaxπ′ Lπk (π′)

s.t. KL (π′‖π) = Es∼dπ [KL (π′(s)‖πk(s))] ≤ δ

This constrained optimization problem is hard to solve, but can be approximated by a
quadratically-constrained linear program. The approximate update is:

θk+1 = argmax
θ

g> (θ − θk)

s.t.
1

2
(θ − θk)> F (θ − θk) ≤ δ

where g = ∇θLπk (πθ) and F is the Fisher information matrix. This is solved by :

θk+1 = θk +

√
2δ

g>F (θk)
−1 g

F (θk)
−1 g

This algorithm is very hard to implement and has some stability problems. This is why it
lead to the algorithm PPO (Proximal Policy Optimization) (Schulman et al., 2017).

3.8.5 PPO (Proximal Policy Optimization)

Given that TRPO is relatively complicated and we still want to implement a similar con-
straint, proximal policy optimization (PPO) simplifies it by using a clipped surrogate objec-
tive while retaining similar performance. We denote the probability ratio between old and
new policies as :

r(θ) =
πθ(a | s)
πθdd(a | s)

Then, the objective function of TRPO becomes:

JTRPO(θ) = E
[
r(θ)Âθold(s, a)

]
.

The idea to limit a two big distance between θold and θ while maximizing JTRPO (θ) to avoid
to instability is here used with another technique. PPO imposes the constraint by forcing r(θ)
to stay within a small interval around 1 , precisely [1− ε, 1 + ε], where ε is a hyperparameter.

JCLIP (θ) = E
[
min

(
r(θ)Âθdd (s, a), clip(r(θ), 1− ε, 1 + ε)Âθold (s, a)

)]
Here the function clip(r(θ), 1− ε, 1 + ε) clips the ratio to be no less than 1− ε and no more
than 1 + ε. Then, the objective of PPO takes the minimum one between the original value
and the clipped version and therefore we lose the motivation for increasing the policy update
to extremes for better rewards. The objective function is augmented with an error term
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on the value estimation (use of an actor-critic network) and an entropy term to encourage
exploration.

JCLIP′(θ) = E
[
JCLIP(θ)− c1 (Vθ(s)− Vtarget )2 + c2H (s, πθ(.))

]
PPO demonstrate very nice performance in practice with outstanding simplicity compare to
TRPO. PPO and A2C are two very common and efficient algorithms that will compare to
other techniques in our problem in the following sections.

35



4 Distributional Reinforcement Learning (DRL)

4.1 Motivations of Distributional Reinforcement Learning for our
problem

The aim of this work is to motivate the distributional reinforcement learning framework in
order to minimize the variance in a reinforcement problem. We wish to choose action that
are less risky and have less variance because we are dealing with human lives and not with
arbitrary values. Variance estimation and reduction in Reinforcement Learning is a capital
issue and the framework of Distributional Reinforcement Learning allow us to estimate the
variance of the return as we get access to the distribution of the return and no only of
the mean which is consider in most of classic Reinforcement Learning problems. Moreover,
amazing progress has been made in RL with the advent of Distributional RL, so it is natural
to be interested in this type of problem. Here we would like to minimize the variance while
maximizing the expectation of the returns.

From an algorithmic point of view, there are many benefits to learning an approximate
distribution rather than its approximate expectation. The distributional Bellman operator
preserves multimodality in value distributions, which we believe leads to more stable learning.
Approximating the full distribution also mitigates the effects of learning from a nonstationary
policy.

Knowing the distribution of the returns, we are able to give an estimator of the variance. So
we are interested in the estimation of the distribution of returns to get a good estimation of
variance. In a second time we will try to make control and use this phase of estimation to
choose the relevant actions.

Distributional Reinforcement Learning has been a outstanding breakthrough in RL com-
munity in the last few years. When Bellemare et al. (2017) has showed that the Bellman
operator over value distributions is a contraction in a maximal form of the Wasserstein, this
opened up great opportunities for research in RL has it allow to model distribution and not
only the mean of the reward. A first algorithm, C51 based on categorical distributions, has
emerged and beats the classical methods on discrete enclosures. Then in a second step, an
algorithm based on quantile estimation of the distribution was developed: QR DQN Dabney
et al. (2017), at the time of its creation, it had more theoretical guaranties than C51. An
improvement of the latter was to be interested in representing the quantile function by a
neural network as in Dabney et al. (2018). Moreover, DRL has been studied theoretically
in Rowland et al. (2019, 2018) , respectively on C51 algorithm or the role of sample and
statistics in DRL. Here the question is how use DRL to learn stochastic policies in discrete
environment and be able to control the variance of out learned policy as much as possible?
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4.2 Notations

As before, we model the agent-environment interactions by a Markov decision process (MDP)
with S andA the state and action spaces, R the random variable reward function, P (x′ | x, a)
the probability of transitioning from state x to state x′ after taking action a, and γ ∈ [0, 1)
the discount factor. A policy π(· | s) maps each state s ∈ S to a distribution over A.

Given a fixed policy π, the return, Zπ =
∑∞

t=0 γ
tRt is a random variable representing the sum

of discounted rewards observed along one trajectory of states while following π. Standard
RL algorithms estimate the expected value of Zπ, the value function,

Vπ(s) := E [Zπ(s)] = E

[
∞∑
t=0

γtR (st, at) | s0 = s

]
.

Similarly, many RL algorithms estimate the action-value function :

Qπ(s, a) := E [Zπ(s, a)] = E

[
∞∑
t=0

γtR (st, at)

]
st ∼ P (· | st−1, at−1) , at ∼ π (· | st) , s0 = s, a0 = a.

In distributional RL the distribution over returns (i.e. the probability law of Zπ), plays the
central role and replaces the value function.

In classic RL, we approach Q function using the optimality equation

Q∗(x, a) = ER(x, a) + γEP max
a′∈A

Q∗ (x′, a′) .

This equation has a unique fixed point Q∗, the optimal value function, corresponding to the
set of optimal policies Π∗ (π∗ is optimal if Ea∼π∗Q∗(s, a) = maxaQ

∗(s, a)). We view value
functions as vectors in RS×A, and the expected reward function as one such vector. In this
context, the Bellman operator T π and optimality operator T are :

T πQ(s, a) := ER(s, a) + γ E
P,π
Q (s′, a′)

T Q(s, a) := ER(s, a) + γEP max
a′∈A

Q (s′, a′) .

In the policy evaluation framework, we are using in the value function V π associated with a
given policy π. The analogue here is the value distribution Zπ. In this section we characterize
Zπ and study the behaviour of the policy evaluation operator T π. We emphasize that Zπ
describes the intrinsic randomness of the agent’s interactions with its environment, rather
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than some measure of uncertainty about the environment itself. We will write the distribution
of the return of policy π and initial state-action air(s, a) ∈ S ×A as :

Z(s,a)
π = Lawπ

(
∞∑
t=0

γtRt | S0 = s, A0 = a

)

Moreover, we denote Zπ for the collection of distributions
(
Z

(s,a)
π | (s, a) ∈ S ×A

)
. We would

like to define the Belleman Operator for distribution but we need the notion of push forward.

Definition 4.1 (Push forward measure)

Let ν ∈ P (R) be a probability distribution and f : R → R a measurable function, the
pushforward measure f#ν ∈ P (R) is defined by f#ν(A) = ν (f−1(A)), for all Borel sets
A ⊆ R.

Intuitively, f#ν is obtained from ν by shifting the support of ν according to the map f . Of
particular interest in this thesis will be pushforward measures obtained via an affine shift
map fr,γ : R→ R, defined by fr,γ(s) = r + γs.

Definition 4.2 (Distributional Bellman Operator and Distributional Bellman equation )

The return distribution function Zπ associated with a policy π, defined previously, satisfies
the distributional Bellman equation:

Z(s,a)
π = (T πZπ)(s,a) ∀(s, a) ∈ S ×A

where T π : P (R)S×A → P (R)S×A is the distributional Bellman operator, defined by:

(T πZ)(s,a) =

∫
R

∑
(s′,a′)∈S×A

(fr,γ)# Z
(s′,a′)π (a′ | s′) p ( dr, s′ | s, a)

for all Z ∈ P (R)S×A. This equation serves as the basis of distributional RL, just as
the standard Bellman Operator. Here at ∼ π (· | st) but we can define Optimal Bell-
man Operator called T with the same manner considering the controle framework where
at = arg maxa′ E[Z(S, a′)].

Definition 4.3 (Wasserstein Metric.)
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The p -Wasserstein distance is characterized as the Lp metric on inverse cumulative distri-
bution functions (inverse CDFs). That is, the p -Wasserstein metric between distributions U
and Y is given by,

Wp(U, Y ) =

(∫ 1

0

∣∣F−1
Y (ω)− F−1

U (ω)
∣∣p dω)1/p

where for a random variable Y , the inverse CDF, F−1
Y of Y is defined by:

F−1
Y (ω) := inf {y ∈ R : ω ≤ FY (y)}

where FY (y) = Pr(Y ≤ y) is the CDF of Y .

Proposition 4.1 (Contraction of Distributional Bellman Operator for Wasserstein metric.)

In the context of distributional RL, let Z be the space of action-value distributions with
finite moments:

Z ={Z : S ×A → P (R) |
E [|Z(s, a)|p] <∞,∀(s, a), p ≥ 1}

Then, for two action-value distributions Z1, Z2 ∈ Z, we will use the maximal form of the
Wasserstein metric introduced by Bellemare et al. (2017),

d̄p (Z1, Z2) := sup
s,a

Wp (Z1(s, a), Z2(s, a))

It was shown that d̄p is a metric over value distributions. Furthermore, the distributional
Bellman operator T π is a contraction in d̄p, So we get from (Bellemare, Dabney, and Munos
2017). T π is a γ -contraction: for any two Z1, Z2 ∈ Z,

d̄p (T πZ1, T πZ2) ≤ γd̄p (Z1, Z2)

Definition 4.4 (Cramer mectric)

The Cramér distance `p between two distributions Z1, Z2 ∈ P (R), with cumulative distribu-
tion functions F11 , F12 respectively, is defined by:

`p (Z1, Z2) =

(∫
R

(FZ1(s)− FZ2(s))
p ds

)1/p

Further, the supremum-Cramér metric ¯̀
p is defined between two distribution functions Z1, Z2 ∈

P (R)S×A by :
¯̀
p(Z1, Z2) = sup

(s,a)∈S×A
`p

(
Z

(s,a)
1 , Z

(s,a)
2

)
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Proposition 4.2 (Contraction of Distributional Belleman Operator for Cramer distance.)

The Cramér distance possesses the following characteristics (detailed derivation of each can
be found in (Bellemare et al., 2017b)):

lP (A+X,A+ Y ) ≤ lp(X, Y ), lp(cX, cY ) ≤ |c|1/P lp(X, Y )

Using the above characteristics, the Bellman operator in lp divergence is

lp (T πZ1(s, a), T πZ2(s, a)) = lp (R(s, a) + γP πZ1(s, a), R(s, a) + γP πZ2(s, a))

≤ |γ|1/P lp (P πZ1(s, a), P πZ2(s, a))

≤ |γ|1/p sup
s′,a′

lp (Z1 (s′, a′) , Z2 (s′, a′))

Substituting the result into the definition of the maximal form of the Cramér distance yields

l̄p (T πZ1, T πZ2) = sup
s,a

lp (T πZ1(s, a), T πZ2(s, a))

≤ |γ|1/p sup
s′,a′

lp (Z1 (s′, a′) , Z2 (s′, a′))

= |γ|1/P l̄p (Z1, Z2)

Thus the distributional Bellman operator is a |γ|1/p -contraction mapping in the Cramér
metric space, which was also proven in Rowland et al. (2019).

On the control setting : The fact that the Ditributional Belleman Operator is a contrac-
tion for two metrics is good news and gives us hope that our algorithm will converge through
a fixed point algorithm. However, in the control case it has been proven (Dabney et al., 2017)
that the operator T in the space of distribution is not a contraction for any metric space.
This is due to the fact that multiple optimal policies can have very different distributions of
the total return even though they have all exactly the same expected total return. Several
practical issues arise in terms of implementation. How to estimate these distribution? Have
we got convergence proof using approximation in algorithms?

4.3 DRL Algorithms and Practical Implementation

4.3.1 Description of DRL algorithms

There are 4 main steps in the implementation of a DRL algorithms which are :

• Distribution parametrisation,

• Stochastic approximation of the Distributional Bellman operator,

40



• Projection of the Bellman target distribution onto our parametrized distribution,

• Gradient update of parameters via a loss function.

Many distribution parametrization exists. The 3 main families are Categorical Distribution,
Quantile distribution and Gaussian Mixture. We will details these after.

For all these algorithms we need to define a projection of the target which must me consistent
with the contraction of the metric.

Stochastic approximation of these Distributional Bellman operator is also needed to use
algorithms in practical case where environment is unknown.

Finally we update our distribution of return according to a loss function using Belleman
operator for a given metric that is defined previously or another one. To ensure to have
convergence of the algorithm a contraction property for a metric space is needed for the
projection of the sampled Bellman Operator.

4.3.2 Categorical Algorithms

Categorical Distributional RL also called CDRL algorithms are a type of distributional RL
algorithms that focus on approximating distributions with the parametric family of the form{

K∑
k=1

pkδzk |
K∑
k=1

pk = 1, pk ≥ 0∀k

}
⊆ P (R)

where z1 < · · · < zK are an evenly spaced, fixed set of supports. For evaluation of a
policy π : S → P (A), given a collection of approximations (Z(s, a) | (s, a) ∈ S × A), the
approximation at (s, a) ∈ S ×A is :

Z(s, a)← ΠCEπ
[
(fR0,γ)# Z (S1, A1) | S0 = s, A0 = a

]
.

With ΠC : P (R)→ P ({z1, . . . , zK}) is a projection operator defined for a single Dirac delta
as

ΠC (δw) =


δz1 w ≤ z1
w−zk+1

zk−zk+1
δzk + zk−w

zk−zk+1
δk+1 zk ≤ w ≤ zk+1

δzK w ≥ zK

and extended affinely and continuously. In the language of operators, the CDRL update
may be neatly described as Z ← ΠCT πZ, where we abuse notation by interpreting ΠC
as an operator on collections of distributions indexed by state-action pairs, applying the
transformation (projection) to each distribution.
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We saw that the operator ΠCT π is a
√
γ -contraction in the supremum-Cramér distance, this

is why by the contraction mapping theorem, repeated CDRL updates converge to a unique
limit point, regardless in theory of the initial approximate distributions. (Bellemare et al.,
2017; Rowland et al., 2018).

Now we need to care about Stochastic approximation. The update Z ← ΠCT πZ is ost of
the time not computable in practice, due to unknown/intractable dynamics. An unbiased
approximation to (T πZ) (s, a) may be obtained by interacting with the environment to obtain
a transition (s, a, r, s′, a′), and computing the target

(fr,γ)# Z (s′, a′)

It can be shown (Rowland et al., 2018) that the following esimator is unbiased for the CDRL
update defined before (ΠCT πZ) (s, a) :

ΠC (fr,γ)# Z (s′, a′)

Finally, the current estimate Z(s, a) can be moved towards the stochastic target by following
the (semi-)gradient of some loss, in analogy with semi-gradient methods in classical RL.
KL loss as Wasserstein gives biased estimate of the mean of distribution but are used in most
of DRL papers has loss to update parameters. We are looking for the difference between a
distribution and the projection of the push forward of the stochastic approximation of the
Distributional Bellman Operator.

KL
(

ΠC (fr,γ)# Z (s′, a′) ‖Z(s, a)
)

Other losses, such as the Cramer distance, may also be considered as it is a contraction for the
considered projection. Another type of algorithm exists based in Quantile estimation. For
this algorithms, we will refer to QDRL for Quantile Distributional Reinforcement Algorithms.

4.3.3 QR-DQN (Quantile Regression DQN)

Quantile DRL (QDRL) algorithms are a type of algorithms which particularity is that they
restrict approximate distributions to the parametric family of the form{

1

K

K∑
k=1

δzk | z1:K ∈ RK

}
⊆ P (R).

For evaluation of a policy π : S → P (A), given a collection of approximations (Z(s, a) |
(s, a) ∈ S ×A), the approximation at (s, a) ∈ S ×A is updated according to:

Z(s, a)← ΠW1Eπ
[
(fR0,γ)# Z (S1, A1) | S0 = x,A0 = a

]
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With ΠW1 : P (R)→ P (R) is a projection operator defined by

ΠW1(µ) =
1

K

K∑
k=1

δF−1
µ (τk)

where τk = 2k−1
2K

, and Fµ is the CDF of of µ.

ΠW1 is the quantile projection defined as above, and when applied to value distributions
gives the projection for each state-value distribution.Given two distributions Z1, Z2 ∈ Z for
an MDP with countable state and action spaces we get :

d̄∞ (ΠW1T πZ1,ΠW1T πZ2) ≤ γd̄∞ (Z1, Z2)

Moreover, the inverse cdf F−1
µ (τ) may also be characterised as the minimiser (over q ∈ R )

of the quantile regression loss

QR(q;µ, τ) = EZ∼µ [[τ1Z>q + (1− τ)1Z≤q] |Z − q|] .

This fact is of capital importance in deriving a stochastic approximation version of the
algorithm. Indeed, with the same manner than for CDRL, the update Z ← ΠW1T πZ is most
of the time not computable, due to unknown/intractable dynamics. Instead, a stochastic
target may be computed by using a transition (s, a, r, s′, a′), and updating each atom location
zk(s, a) at the current state-action pair (s, a) by following the gradient of the QR loss:

∇q QR
(
q; (fr,γ)# Z (s′, a′) , τk

)∣∣∣
q=zk(s,a)

Because the QR loss is affine in its second argument, this yields an unbiased estimator of the
true gradient which is not the case for a Wasserstein loss.

∇qQR (q; (T πZ) (s, a), τk)|q=zk(s,a)

We are not using Wasesstein loss has it gives biased estimate. More details can be found in
annex. Now some paper use Cramer as a loss with Quantile distribution.

4.3.4 IQN (Implicit Quantile Network)

This new algorithms is closed to QRDQN. In the Implicit Quantile Network (IQN) algorithm,
Dabney et al. (2018) proposed to approximate the quantile function of Z(s, a) with a neural
network and to learn it using quantile regression.

The quantile function of Z(s, a) can be learned using Neural Network. Denote Ẑ(s, a) the
approximated random variable whose quantile function is given by a neural network Ψ(s, τ)
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which takes as input a state s and a probability τ ∈ [0, 1] and returns the corresponding
τ -quantile Ẑτ (s, a) for each action a. Once a transition observed from our environment
(s, a, r, s′) ,Ψ is trained by sampling 2N values τ = (τ1, . . . , τN) and τ ′ = (τ ′1, . . . , τ

′
N) with

the uniform distribution on [0, 1]. By inverse transform sampling, sampling τ amount to

sampling N values from Ẑ(s, a) corresponding to Ẑτ1(s, a), . . . , ẐτN (s, a)
)

, and similarly for

τ ′ and sampling from Ẑ (s′, π (s′)) where π is the current policy. From samples,we compute
N2 TD errors in the distributional setting:

δij = r + γẐτ ′j
(s′, π (s′))− Ẑτi(s, a)

Following quantile regression, the following loss function for training the neural network Ψ
in (s, a, r, s′) is given by:

LIQN =
1

N

∑
i∈[N ]

∑
j∈[N ]

ηKτi (δij)

where for any τ ∈ (0, 1], ηκτ (δij) = |τ − I (δij < 0)| Lk(δij)

κ
is the quantile Huber loss with

threshold κ with Lκ(δ) = 1
2
δ2 for |δ| ≤ κ or κ

(
|δ| − 1

2
κ
)

otherwise.

It is possible to sample τ with not an uniformly manner if we are looking for risk-adverse
or risk-seeking policy using risk-adverse or risk-seeking function to sample. These three
presented algorithms are very popular in DRL community and achieve very good results on
discrete environment.
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5 Our contribution : Variance Control using DRL for

Medical Pathway

5.1 Description of the problem

The main idea here is to reduce variance of our trajectories as much as possible to avoid that
some patient get non acceptable trajectories an a very long time waiting to be diagnosed.
We propose two different ideas to control the variance of trajectories. One based on Policy
Iteration Principal with a new objective function and one based on Policy Gradient Under
Constraint. Both methods relies on DRL framework. In the first one, we will give a guarantee
of convergence and an implementation. The second on is still and idea and need to be explore
in depth.

5.2 Variance control using variance penalization

5.2.1 Motivation of the algorithm

A simple first idea is to take into account an estimation of the variance in the formulation
of the objective function we are trying to maximize. The idea is to get a trade off between
maximizing the expectation and reduce the variance of our policies. Then a natural idea is
to write an objective function with both quantities. Then a natural formulation is to find
an action that maximize. We define ξα(U) the operator such as ξα = E[U ] − α

√
V[U ] =

E[U ]− α
√

(E[U2]− E[U ]2). We are looking for action a∗ such that :

a∗ = arg max
a

ξαZ
(s,a)
π = arg max

a
E[Z(s,a)

π ]− α
√

V[Z
(s,a)
π ] (2)

However we must define α carefully to ensure convergence property. A second formulation
could be the following to get a certain homogeneity between the square of the expectation
and the variance but it is not acceptable has we are only dealing positive quantities but does
not take into account negative reward.

a∗ = arg max
a

ξ
′

αZ
(s,a)
π = arg max

a
E[Z(s,a)

π ]2 − αV[Z(s,a)
π ] (3)

So we will chose formulation 2 for the next of our work. The question now is how chose α
and can we get convergence property of this objective function? That we will see in the next
section.

5.2.2 Convergence of the algorithm

We know that T is not a contraction in general in the space of distribution but we are looking
for a contraction of this operator in the sup norm under element-wise ξ evaluation. This is
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motivated by the fact we know that T is a γ-contraction in sup-norm under element-wise
expectation Bellemare et al. (2017) i.e:

‖ET U − ET V ‖∞ ≤ γ‖EU − EV ‖∞

The fact that it is contraction for a certain metric ensure by the Banach contraction mapping
theorem that repeated updates converge to a unique limit point, regardless in theory of the
initial approximate distributions.

Theorem 1 The operator T is a γ- contraction for the infinite norm using element-wise
evaluation with the statistic ξα, in other term :

∀U, V ⊆ P (R), (s, a) ∈ S×A, sup
s,a
|ξαT U(s, a)−ξαT V (s, a)| ≤ γ sup

a′,s′
|ξα(U)(s′, a′)− ξα(V )(s′, a′)|

So we get a contraction of T which ensure use a convergence in control setting which is of
capital importance for our algorithm. The sensitivity to α will be also studied empirically.

Proof :∣∣∣ξαT U(s, a)− ξαT V (s, a)
∣∣∣ =

∣∣∣∑
r,s′

p(r, s′|s, a)

(∫
(r + γu)dU(s′, AU(r, s′))

− α
[ ∫

(r + γu)2dU(s′, AU(r, s′))−
(∫

(r + γu)dU(s′, AU(r, s′))
)2]1/2

−
∫

(r + γv)dV (s′, AV (r, s′))

+ α
[( ∫

(r + γv)dV (s′, AV (r, s′))
)2

−
∫

(r + γv)2dV (s′, AV (r, s′))
]1/2∣∣∣

=
∣∣∣∑
r,s′

p(r, s′|s, a)
(
r + γ

∫
udU − α

[
r2 + γ2(

∫
u2dU) + 2γr(

∫
udU)− r2

− γ2(

∫
udU)2 − 2γr(

∫
udU)

] 1
2
)

−
(
r + γ

∫
vdV − α

[
r2 + γ2(

∫
v2dV ) + 2γr(

∫
vdV − r2 − γ2(

∫
vdV )2 − 2γr(

∫
vdV )

)] 1
2
∣∣∣

= γ

∣∣∣∣∣∑
r,s′

p(r, s′|s, a)

(∫
udU − α

[
(

∫
u2dU)− (

∫
udU)2

] 1
2

)
−
(∫

vdV − α
[
(

∫
v2dV )− (

∫
vdV )2

)] 1
2

∣∣∣∣∣
Choosing A′ = AU(r, s′) = arg maxa′ E[U ]−αV[U ] as in control setting. Fist line comes from
definition of T . So we get :
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∣∣∣ξαTU(s, a)− ξαTV (s, a)
∣∣∣

=γ
∣∣∣∑
r,s′

p(r, s′|s, a)
(

max
a′

ξα(U)(s′, a′)−max
a′′

ξα(V )(s′, a′′)
)∣∣∣

≤γ
∑
r,s′

p(r, s′|s, a) max
a′

∣∣∣ξα(U)(s′, a′)− ξα(V )(s′, a′)
∣∣∣

≤γ sup
a′,s′

∣∣∣ξα(U)(s′, a′)− ξα(V )(s′, a′)
∣∣∣

Because of triangle inequality and the fact that |maxa f(a)−maxa′ g (a′)| ≤ maxa | f(a) −
g(a) | .

5.2.3 Description of the algorith

Considering distribution θ(s, a) represented by N points θ = (θ1, . . . , θN) and m the size of
a minibatch, τ̂i = (i− 0.5)/N and as in QRDQN, ρτ (u) = u(τ − δu<0) which is the quantile
regression (QR) loss of QRDQN, the algorithm is the following :

Algorithm 10 QR-DQN with Variance Control objective

Input: γ, α, θ, θ′, mini-batch (sk, ak, rk, x
′
k) for k = 1 . . .m

for k=1,...m do
a′k ← arg maxa′ ξ (θ′) (x′k, a

′)
T θj (sk, ak)← rk + γθ′j (s′k, a

′
k)

end for
L ← 1

m

∑m
k=1

1
N2

∑
i,j ρτ̄i (T θj (xk, ak)− θi (xk, ak))

Output ∇θL.

47



From a practical point of view, to estimate the distribution, we have follow the algorithm
QRDQN with 200 quantiles uniformly spread per action-state. The more quantiles we sample,
the more accurate we represent the distribution but increase complexity. Variance in our
algorithm is estimated using classic empirical estimator of the variance of our quantiles.
Another idea is to use the framework of Constraint Optimization co control the variance
estimated via DRL.

5.3 Variance control using Policy Gradient and Constraint RL

One could during control step try to optimize a function or surrogate function of the gradient
of Policy Value under constraint that the variance is too big. For example, considering the
objective of PPO algorithm :

JPPO(θ) =
∑∞

t=0 min
(
rt(θ)Eθ

[
Zθ (st, at)−Zθ (st)

]
clip (rt(θ), ε)Eθ

[
Zθ (st, at)−Zθ (st)

])
where θ is the parameter of the current policy and rt(θ) = πθ(at|st)

πθ(at|st) .The problem can then

be tackled by iteratively solving the following problem with this surrogate function:

max
θ

JPPO(θ) s.t. ρ
(
Zθ
)
≤ d

Now using the classic log barrier function, we reformulate problem as an unconstrained
problem:

max
θ

JPPO(θ) + ln
(
d − ρ

(
Zθ
i

))
Here we are interested in the variance of the problem that can be estimated using quantile
or implicit quantile approximation function:

ρ
(
Zθ
i

)
=

N∑
i=1

(τi − τi−1) Ẑτi (s0)2 −

(
N∑
i=1

(τi − τi−1) Ẑτi (s0)

)2

This idea has not been implemented has yet but raise some technical issues as the gradient

∇θJPPO(θ)−
∇θρ

(
Zθ
)

d − ρ
(
Zθ
)

is difficult to compute because of ∇θρ
(
Zθ
)

which is the gradient of the critic with respect
to the parameters of the actor in PPO. An idea could be to connect actor network to critic
network with the non linearity ρ to be able to compute gradient via automatic differentiation.
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5.4 Comparison of different algorithms on our problem

In this experiment, the different algorithms presented above were compared, namely PPO,
A2C, DQN and a version of QRDQN with and without variance penalisation. We took
200 quantiles for QRDQN and we use a target network updated every 200 steps for both
DQN and QRDQN with experience replay trick. Exploration fraction in greedy agorithm is
adapted to encourage exploration at the beginning and decrease progressively.

Each point in the graph is the average of himself and the 49 previous one to smooth the
trajectories which are quite fluctuating by their stochastic nature. Each of the 50 point use
for 1 point is the itself the average of 20 trajectories sampled via the learned algorithm. A
complete description of the environment can be found in Annex 7.1.

Interpretation of Results of graphs 5 and 6:

• For our environment, the two versions of QRDQN find the best optimal policy the
fastest. Then performances of PPO an DQN are quite similar for this discrete environ-
ment and finally A2C is the slowest to reach optimal policy.

• We can see that our version with a variance penalty has a smaller variance than the
classical version of QRDQN. At first, the variances are similar and then the variances
increase when a better policy is found. Finally, in the penalized version of QRDQN,
the variance drops without affecting the mean in a second step. These results are
promising and allow us to control the variance of our trajectories in order to make
medical trajectory learning more stable.
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Figure 5: Mean reward of 20 trajectories in function of time-steps

Figure 6: Variance reward of 20 trajectories in function of time-steps
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To give a short illustration of distribution in QRDQN, we have represented in Fig. 7 three
densities for the state ”Neurologist,Cardiologist”. Sticks in black are the estimated quantiles
and in blue the density is plotted for each possible action which are ”Oncologist, Dermatol-
ogist and Radiologist”. We know that from our environment that the right recommendation
should be to consult ”dermatologist” has if the patient has visited this combination it has
0.8 to be diagnosed. For the other doctors it is less probable to be diagnosed. This is why
the median of the distribution shift to the left.

Figure 7: Densities of 3 action-state in function of the number of consultation remaining
before being diagnosed. In black, quantiles of the distribution and in green the median of
the distribution.

5.5 Sensitivity to α

In our algorithm the choice of α has be explored. In order to understand the influence of this
parameter, we trained our algorithm on our problem and varied α. The average reward and
variance of 20 trained trajectories were plotted. Every point is the average of the 49 previous
one and itself to smooth the curve.

As can be seen, the average performances are quite similar and are not really dependent
on α as we do not vary α too much. However, the choice of α is important for variance
reduction because when we choose a too small α, the interest of variance reduction is lost
in our algorithm as expectation is not regularized. So we must an acceptable value of α to
ensure a good variance control of our problem. If α is too big, the algorithm will not be able
to find a good policy in term of expectation.
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Figure 8: Mean reward for QRDQN with γα penalization

Figure 9: Variance reward for QRDQN with α penalization
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6 Conclusions and Perspectives

We were interested in modelling the trajectory of rare disease patients and how to try to
find a strategy to minimise diagnostic wandering. Particular attention was paid to reducing
the variance of trajectories in learned policies while maintaining good overall performance
in terms of expectation. We proposed and implemented an algorithm and justified its con-
vergence to answer our problem. However, it is now a question of running it on real health
data once the latter arrive for the beginning of the PhD thesis. It would be interesting to
run these algorithms on other normalized environments of MujoCo.

It is also possible to ensure more certain trajectories with risk adverse reinforcement learning.
This idea is developed first in Dabney et al. (2018), These two problems are quite similar
and are based on the DRL theory as well. It would be interesting to look at the results and
compare them to our methods to see if the variance also decreases. Moreover, Theoretical
quantitative analysis of our algorithm would be appreciated afterwards.

7 Annexes

7.1 Description of the Environment of simulation

In the environment we consider 10 doctors. which are cardiologist, dermatologist, neurol-
ogist, oncolologist, radiologist, generalist doctor, urologist, gastrologist, gynecologist and
venerologist.

We do not order the fact to see a cardiologist and a dermatologist and vice versa so there
are 1023 states. The action chosen by the algorithm are the next doctor to be consulted.
For CPTs between doctor states, We pick randomly transitions from one specialist to another
one. For CPT, to get diagnosed we have choose 5 diseases with are present with proportion
(1/5, 1/5, 1/5, 1/5, 1/5) in our population. They are defined as follow :

• Disease 1: Need to have visited cardio,dermato tho get 0.8 to be diagnosed and if
have visited the 10 doctors, we get automatically diagnosed with probability 1.

• Disease 2: Need to have visited dermato,neuro tho get 0.8 to be diagnosed and if have
visited the 10 doctors, we get automatically diagnosed with probability 1.

• Disease 3: Need to have visited radio,generalist tho get 0.8 to be diagnosed and if
have visited the 10 doctors, we get automatically diagnosed with probability 1.

• Disease 4: Need to have visited generalist,uro,gastro tho get 0.8 to be diagnosed and
if have visited the 10 doctors, we get automatically diagnosed with probability 1.
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• Disease 5: Need to have visited gyneco,venero tho get 0.8 to be diagnosed and if have
visited the 10 doctors, we get automatically diagnosed with probability 1.
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Stéphanie Nguengang Wakap, Deborah M Lambert, Annie Olry, Charlotte Rodwell, Char-
lotte Gueydan, Valérie Lanneau, Daniel Murphy, Yann Le Cam, and Ana Rath. Estimating
cumulative point prevalence of rare diseases: analysis of the orphanet database. European
Journal of Human Genetics, 28:165–173, 2020. doi: 10.1038/s41431-019-0508-0. URL
https://doi.org/10.1038/s41431-019-0508-0.
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